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MULTIDIMENSIONAL MODULATION AND CODING

FOR BANDLIMITED DIGITAL CHANNELS

V. by

E.Biglieri and M.Elia

Dipartimento di Elettronica - Politecnico di Torino

Corso Duca degli Abruzzi 24 - 1-10129 TORINO (Italy)

Telephone: +39-11-5567230 Telex: 220646 POLITO-I

* "ABSTRACT

A class of multidimensional signals, based on what

we call Generalized Group Alphabets, is introduced,

and its basic properties are derived. The combina-

tion of Generalized Group Alphabets and coding is

also examined: two coding schemes are considered,

viz., Ungerboeck's scheme for combination with

convolutional codes, and Ginzburg's scheme for

combination with block codes. The performance of

these schemes makes them attractive for transmis-

sion over bandlimited digital channels.

..

This work has been sponsored in part by the United States Army

through its European Research Office, and in part by the

Italian Department of Education under a "60% Grant".
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Our research activity during the period covered by this report was

devoted to the design of multidimensional codes for bandlimited digital

channels. The goal is to achieve a high efficiency in the use of the

available spectrum through trellis or block codes that operate in a

multidimensional signal space.

In particular, our attention was focused on the algebraic properties

of a class of multidimensional signal sets, which we call "Generalized

Group Alphabets". Further details about this project can be found in the

.... enclosed manuscript, which was submitted for publication in the IEEE

' Transactions on Information Theory.
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*family. After a description of the main features of these alpha-

bets, we show how they can be used in conjunction with error

control codes; the concept of fair partition will be introduced,

and some of its relevant properties described. Finally, we pro-

vide some examples of actual designs.
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II. GENERALIZED GROUP ALPHABETS

Consider a set of K n-vectors X - {Xl,...,XKI, called the

initial set, and L orthogonal n x n matrices SI,..., SL that

'€. form a finite group G under multiplication.

Definition 1

The set of vectors GX1 , GX2 , ... , GXK obtained from the action

of G on the vectors of the initial set is called a Generalized

Group Alphabet (GGA). G is called its generating group.

Definition 2

A GGA is called separable if the vectors of the initial set are

transformed by G into either disjoint or coincident vector sets,
-' i.e.,

4.

Gx jk  k

iGXj j k

4e. If lJxtJ denotes the Euclidean length of a vector X, the

4.. quantity IIX11
2 is proportional to the energy of the signal asso-

ciated with X for transmission over a continuous channel. Since

an orthogonal matrix transforms a vector into one with the same

length, the signals associated with a GGA have as many energy

levels as there are in the initial set. The special case of a GGA

with K-i, and hence only one energy level, was extensively

studied in [7].

Definition 3

A GGA is called regular if the number of vectors in each subal-

phabet GXj, J-I, ... ,K, does not depend on J, i.e., each vector of

the initial set is transformed by G into the same number of

I distinct vectors. A regular GGA is called strongly regular if

4 %



each set GXj contains exactly L distinct vectors.

The following result stems directly from the definitions.

Proposition I

The number M of vectors in a regular GGA is a multiple of K. If

GGA is strongly regular, then M-KL.

Hereafter we exhibit four examples of these alphabets. Notice

that for K-1 every GGA is regular, but not necessarily strongly

regular 17,16].
J.

Alphabet 1 (Asymmetric M-PSK: 2 dimensions, 1 energy level)

Choose an initial vector X - (cose, sin$), 0 a given constant, an

integer M-21', and consider the group of 2 x 2 orthogonal matrices

of the form RiTJ, i-0,1, ... , M-1, J-l,2, where

. cos(2M) sin(2r/M)

I -sin(2v/M) cos(2w/M)

and

-1 0

It is seen that the effect of R on a 2-dimensional vector is to

rotate it by an angle 2w/M, and the effect of T is to exchange

its components. This group has 2M elements, and gives rise to a

separable alphabet of M or 2M vectors, according to the choice of

the initial vector. Notice that the alphabet is strongly regular

only when it has 2M elements (asymmetric M-PSK [13,14]).

Alphabet 2 (4 dimensions, I energy level)

Consider the group of matrices which act on a four-dimensional

initial vector by permuting its components and replacing them

with their negatives. This group has 412 4 elements. If the ini-

.1
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tial vector is Xl-(a,a,a,O), aI1143, the resulting (separable)

alphabet has M-32 distinct unit-energy vectors (see Fig.1).

Alphabnt 3 (2 dimensions, 3 energy levels)

Our third example is shown in Fig.2. Points 1,2,3 and 4 denote

the four vectors in the initial set. The matrices generating the

code are those associated to plane rotations by multiples of r/2.

The resulting (strongly regular, separable) alphabet is the

conventional 16-QAM.

Alphabet 4 (4 dimensions, 2 energy levels)

This alphabet which has two energy levels, K-4, and M-128, is

obtained from the initial set of vectors

c c c 0

-b c c 0

c -b c 0

c c -b 0

with c-0.389 and b-0.939. If we apply to this initial set the

same matrix group which generates Alphabet 2, we get a

separable alphabet with 128 vectors (see Fig.3). Among them, 32

have energy 3c2, and 96 have energy b2+ 2c2 . The average energy

is 1.

We consider now some distance properties of the elements of

a GGA. Choose a partition of it into m subsets Z1 , Z2,.'', &-

For each subset Zi, we can define the intradistance set as the

set of all the Euclidean distances among pairs of vectors in Zi.

For any pair of distinct subsets Zi, Zj, we define their

interdistance set as the set of all the Euclidean distances

between a vector in Zi and a vector in Zj.

Definition 4

The partition of a separable GGA into m subsets Z1 ,...,& is

called fair if all the subsets are distinct, include the same

,r e
",
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----- number of vectors, and their intradistance sets are equal.

We shall now exhibit a constructive method to generate fair

partitions of a GGA. Consider the generating group § of the GGA,

one of its subgroups, say H, and the partition of G into left

cosets of H. We have the following result.

S.

'S. Theorem 1

,5..5, If the left cosets of the subgroup H are applied to the initial

set of a strongly regular GGA, this procedure results into a fair

partition of the GGA. Under the same hypotheses, if H is a normal

subgroup, then left and right cosets give rise to the same fair

-.' partition.

Proof

Let S denote an element of Gg not belonging to H, and SH the

corresponding left coset. If Xi , Xj are two (not necessarily

distinct) vectors of the initial set, and Sh , Sk are two elements

of H, the intradistance set associated with the coset SH includes

the quantities

dj(S, Sh, S) IIssx Sskxi

as Sh , Sk run in H, and Xi, Xj run in the initial vector set. We

have

dlij(S, Sh, Sk) - IjXjI{ + j{xjj{' - 2 XT s5 sT S sk xi

- N xj112 + IIXiII 2 - 2 x3 S Sk Xi

4. where the superscript T denotes transpose.

As the right hand side of the last equation does not depend

on S, we have shown that the intradistance set associated with

* the left cosets of H are independent of the coset. Moreover, if H

is normal, then right cosets and left cosets give rise to the

rAP ' .
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same fair partition: in fact, normality implies that for every S

SH-HS.

The condition of strong regularity of the GGA can be

"- removed: but in this case it may happen that different cosets

generate the same element of the partition. Hence, some of the

cosets must be removed from consideration. Moreover, notice that

if H is a normal subgroup of G, then we do not need to

distinguish between left or right coset partitions. On the

contrary, if H is not normal, the partitions obtained from right

cosets may not be fair, as shown by the following counterexample.

Example 1

Let us consider the 4-dimensional alphabet generated by the

* action of the natural matrix representation of the permutation

group S, on the initial vector (-3d/2, - d/2, d/2, 3d/2), d a

constant. Let us consider the partition induced by the subgroup

of the matrices leaving invariant the fourth component of the

initial vector. This subgroup is isomorphic to S3. The left and

S. right coset partitions associated'with H are shown in Table I. It

can be seen that the partition associated with right cosets is

not fair, because its intradistance sets are not equal.

In some cases, we are interested to partition further

every element Zi in the same number of subsets. We are lead to

the concept of a chain partition.

Definition 5

The chain partition of a separable GGA is called fair if any two

elements of the partition at the same level of the chain include

the same number of vectors and have equal intradistance sets.

~N % N

S
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left coset partition right coset partition

(-3d/2.- d/2. d/2, 3d/2) (-3d/2,- d/2, d/2, 3d/2)

(- d/2,-3d/2, d/2, 3d/2) (- d/2,-3d/2, d/2, 3d/2)

d/2,- d/2,-3d/2, 3d/2) ( d/2,- d/2,-3d/2, 3d/2)

(-3d/2. d/2,- d/2, 3d/2) (-3d/2, d/2,- d/2, 3d/2)

(- d/2, d/2,-3d/2, 3d/2) (- d/2, d/2,-3d/2, 3d/2)

( d/2,-3d/2,- d/2, 3d/2) ( d/2,-3d/2,- d/2, 3d/2)

( 3d/2,-3d/2,- d/2, d/2) ( 3d/2,- d/2, d/2,-3d/2)

( 3d/2,- d/2,-3d/2, d/2) (- d/2, 3d/2, d/2,-3d/2)

( 3d/2, d/2,- d/2,-3d/2) ( d/2,- d/2, 3d/2,-3d/2)

3d/2,-3d/2, d/2,- d/2) ( 3d/2, d/2,- d/2,-3d/2)

( 3d/2,- d/2, d/2,-3d/2) (- d/2, d/2, 3d/2,-3d/2)

( 3d/2, d/2,-3d/2,- d/2) ( d/2, 3d/2,- d/2,-3d/2)

(-3d/2, 3d/2,- d/2, d/2) (-3d/2, 3d/2, d/2,- d/2)

d/2, 3d/2,-3d/2, d/2) ( d/2,-3d/2, d/2,- d/2)

(3d/2, 3d/2,- d/2,-3d/2) (3d/2, 3d/2,-3d/2,- d/2)

(-3d/2, 3d/2, d/2,- d/2) (-3d/2, d/2, 3d/2,- d/2)

( d/2, 3d/2, d/2,-3d/2) ( 3d/2, d/2,-3d/2,- d/2)

(-d/2, 3d/2, -3d/2,- d/2) ( d/2,-3d/2, 3d/2,- d/2)

(-3d/2,- d/2, 3d/2. d/2) (-3d/2,- d/2, 3d/2, d/2)

(- d/2,-3d/2, 3d/2, d/2) (- d/2,-3d/2, 3d/2, d/2)

( d/2,- d/2, 3d/2,-3d/2) ( 3d/2,- d/2,-3d/2, d/2)

(-3d/2, d/2, 3d/2,- d/2) (-3d/2, 3d/2,- d/2, d/2)

( d/2, d/2, 3d/2,-3d/2) d /2, 3d/2,-3d/2, d/2)

d/2,-3d/2, 3d/2,- d/2) ( 3d/2,-3d/2,- d/2, d/2)

Ii Table I -Left and Right coset partitions of GGA

l%
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*For fair chain partitions we have the following theorem, whose

proof is straighforward and will be omitted.

Theorem 2

*e Consider a strongly regular GGA, and a chain of subgroups of its

generating group G, that is

Ih c 2 c H-3 c ... c =G

Use Hs-, and its left cosets to generate a partition of GGA.

Then, use Hs-i and its left cosets in Hs to further partition all

the sets of the previous partition. Repeat the procedure with

N-2, and so on, until HI and its left cosets in H2 are used.

* The resulting chain partition of GGA is fair.

A theorem concerning the interdistance sets sheds some

*,- further light on the symmetry properties of GGA's.

Theorem 3

Let H be a normal subgroup of G'. The partition of a strongly

regular GGA obtained by applying the left cosets of H to the

"* initial set X has the following property: The interdistance set

associated with any two cosets, say SIH and S2H, is a function

only of the coset S3H, where S3 - slTs 2 , and not of Sl, S2

separately.

Proof

Let S, and S2 denote two coset leaders. If Xi, Xj are two (not

necessarily distinct) vectors of the initial set X, and Sh, Sk

are two elements of H, the distances among elements of the cosets

SH and S2H includes the quantities

dij(S 1 , S2, Sh, Sk) II SSh Xj - S2Sk Xill

as Sh , Sk run in H and XI , X. run in X. We have

T 0 . Ie ' .



dij(SI, S2. Sho Sk) - lXJ1 2 + HxilI2 - 2 xI S S s k Xi

- IX jl2 + lix ,ll2 -2 XI TS 3 SkXi
"n-.

Finally, as H is a normal subgroup, we have

* in S2 s2 - S1 s2H - sI

i.e., S3H is another coset. a

We now provide some examples of fair partitions of a GGA.

.''i Consider first the rotation group which generates Alphabet 3 (see

Fig.2) and its partition into the two cosets associated with the

rotations 0, v, and v/2, -v/2, respectively. The GGA is fairly

partitioned into the two subalphabets {1,2,3,4,9,10,11,12) and

{5,6,7,8,13,14,15,16)

Fig.1 shows a fair partition of the Alphabet 2 in four

subsets of 8 vectors each. Th's partition is obtained as fol-

lows: denote by a the orthogonal matrix whose effect on a vector

is to cyclically shift its components to the right by one

position, and to change sign to the second component. Then the

set

H H = {ao,a1,a 2,a3,a4,a 5 ,a6,a7 )

*" is a cyclic normal subgroup of the group G generating the alpha-

bet, and its cosets generate the fair partition.

A fair partition of Alphabet 4 into 16 subsets of 8 vectors

O.' each stems from the subgroup {I, -I), where I is the 4 x 4

identity matrix (see Fig.3). A fair partition of Alphabet I is

obtained by considering the two cosets of the subgroup (Ri} :;.

A,.-

lO.

Ru %
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Definition 6

Let R be a left coset of G in the fair partition of a GGA, and S.

an element of G. We define the distance profile 115] associated

with R and SB as the polynomial in the indeterminate w:

F(w, Sg, R)A E a(d
2) wd2

where a(d2 ) is the number of elements of RX that have squared

distance d2 with respect to an element of the set S RX.dB-

Example 2

Consider K-1, Xl-(1, O)T , and the group of plane rotations

cos(ii/2) sin(ii/2) 1
Si- i-0,1,2,3

-sin(i,/2) cos(iw/2)

The subgroup {S0 , S2) is normal. The distance profiles are

-summarized in Table II.

.

q,_

6
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SI IR S Sg F(w SgiR

.I {Ss!S I

- I {S(o S2) So 2w0 +2w4 I
I (so, s2) S, 4w2

(so SO S2 2w0+2w' I

I {S, SO) S2 2wv+2w4

{SI, SO) S3 4w2  I
-I I

Table II - Distance profiles for Example 2

Definition 7

A fair partition of a GGA is called homogeneous if the set

{F(w,S,R))scG does not depend on R. It is called strongly homoge-

neous if F(w,S,R) does not depend on R for any S.

Theorem 4

If G is a commutative group, all the partitions generated by its

subgroups are fair and strongly homogeneous.

Proof

Let H be a subgroup of G: this is obviously normal, so that the

partition induced by H is fair. Let Xi, Xj be two elements of the

initial set X, S an element of G, SH an element of H. Then for

any SgcG the computation of F(w, Sg, SH) involves enumerating the

squared distances

Q&6
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ISSH X, Sg9S SlIXJH I SSH Xi S SSIHXJII2

- Pl Si Xi - SgSlHXJI112

which do not depend on S, and hence on the element of the fair

partition.

Theorem3 5

If H is a subgroup of G in a strongly regular GGA, the partition

generated by the left cosets of H is fair and homogeneous.

Proof

4 Let H be a subgroup of G. Then, the partition induced by the left

cosets of H is fair. Let Xi, Xj be two elements of the initial

* set, S an element of G, SH and SlH two elements of H. Then for

any ISg9cG the computation of F(v, S., SH) involves enumerating the

squared distances

11 S SH Xi - Sg S SlHXjII2 11 SH Xi - ST SgS SlHXjiH 2
-

* lSH Xi - SiSlHXJII2

so that F(w,S,,SH) -F(wS'gSl), and as S 9 runs through G all

over G also S' IT S S dges. Thus, the assertion is proved.n

1.1 14 ' l I I I



III. MULTIDIMENSIONAL CODED SIGNALS. BLOCK CODES

We shall now see how the multidimensional alphabets described in

the previous section can be used in conjunction with codes to

further enhance their performance. In this section, we shall

focus our attention on block codes, while next section will be

devoted to convolutional (trellis) codes.

Hinai and Hirakawa [18] and V.V. Ginzburg [8] have recently
described constructions which make it possible to design alpha-

bets with an arbitrary signal distance and with a regular

structure, as insured by the algebraic properties of block codes.

Fig.4 shows Ginzburg's construction. The L block encoders

C1 ,C2 ,. ..,CL accept source symbols, and output L blocks

(qlj'q2j .... ,qNj) of N symbols each. The modulator f maps each

L-tuple (qjl,...,qjL), J-I,...,N, into the vector

xj wf(qjl ... ,qjL), J- 1, N

chosen from a set A of Ml.. .ML elements. This mapping is

obtained as follows. In the set A we define a system of L

partitions such that each class of the L-th partition includes

Mi classes of the (t-1)-th partition, so that it will consist of

M(t)-MIM 2 .. .M signals. By numbering the classes of the (L-1)-th

level occurring in a class of the L-th level we can obtain a

one-to-one mapping of the set of classes of the (L-1)-th parti-

tion onto the set of integers {0,...,M-I). Therefore, if qij

are chosen in the set {O,...,MI-l}, =l,. ..,L, any L-tuple

" (qjlp... ,qjL) defines a unique value of the J-th elementary

signal xjmf(qjl,...,qjL) (see Figure 5).

We have the following result [81: the alphabet obtained has

a minimum squared Euclidean distance D1 such that

D2 min ( 61dt)

1St1L

0



where d1,...,dL are the minimum Hamming distances of the L

block codes C1,..,CL , and 62, is the minumum squared Euclidean

distance between the symbols in each subalphabet of the i-th

partition.

Consider now Ginzburg's constructions based on generalized

group alphabets. By associating with each level the elements of

a fair partition (the concept of a fair chain can be used here),

all the subalphabets at a given level have the same minimum

distance. From the fair partition of Alphabet 2 described

before, we have 82 1 -2/3, and 622 -2. Thus, using the

(N,k,3) Hamming code on GF(4) [9 ,p.193-41 and the trivial

(N,N,I) code on GF(8), with N-(4m-l)/3, k-N-m, mI, we have

.. D2 2. The resulting alphabet has a rate

R [ 5(4m - 1) -6 m ]/[ 4 (4m 1)]

and

D2 1og02M = 10 - 12 M / ( 4m - 1 )

• . For example, choosing m-2 we get a rate R-1.05 and D21og 2M a 8.4;

with m-3 we get R-1.18 and D2 logM 9.4.

Using Alphabet 4, and the partition described, we have

62 1u2c
2 , and 222-8c

2. The (18,15,4) extended Haming code

[19 ,p.36] on GF(16) and the trivial (18,18,1) code on GF(8)

can be employed, providing a squared minimum distance D2  1.211.

This alphabet yields R-1.583 and D21og 2M7.67.
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IV. MULTIDIMENSIONAL CODED SIGNALS. TRELLIS (UNGERBOECK) CODES

We shall now see how an Ungerboeck codes 110] can be designed

using a multidimensional alphabet generated as described in Sec-

tion II. Such codes can be specified as in 117]. Each coded

symbol depends on k+v source bits, namely the block i-(a1 ... .ak)

of k bits generated by the source, plus v bits preceding this

block. The v bits determine one of the N-2v states of the enco-

der, say o 0 (ak+l, ... , ak$V), an=0,1. The encoder state for

the next coded symbol is obtained by shifting the an's k places

to the right, dropping the right-most k bits and inserting on the

left the most recent k source bits. The encoded symbol x depends

on t and a; we write

x = f(l, o) (4.1)

where x is an element of a GGA. This encoding procedure can be

described using a trellis (Fig.6 shows a section of such a

trellis, obtained for v-2).

Although no formal proof exists, it is conjectured that a

good code should show a good deal of symmetry, to be reflected by

the structure of the function f in (4.1), or, equivalently, by

the assignment of symbols to the branches connecting any pair of

nodes in the code trellis (for further details see, e.g., [10],

[* 111]). This can be obtained in our framework by assigning to the

branches associated with each node the set of symbols obtained

from a fair partition of a GGA. This is equivalent to the proce-

dure suggested in [101 and called "mapping by set partitioning":

*@ thus, our procedure can be viewed as a systematic way to achieve

set partitioning.

The most widely used single parameter that specifies the

performance of these codes on the additive white Gaussian noise

channel is the free distance. This can be computed using a

% . g • W 4 - 4 . 4 "
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generating function approach, which consists of enumerating all
possible distances between sequences of symbols associated with

paths in the trellis. In general t11l the generating function can

be obtained as the transfer function of a state diagram regarded

as a signal flow graph. The state diagram is defined over an

expanded set of N2 -22V states. For the special case of a t-ellis

based upon a linear binary convolutional code, and a strongly%-%

homogeneous fair partition of a GGA, the minimum distance can be

computed from a generating function obtained as the transfer

function of a state diagram including only N=2v states. (See

Theorem 3 of 115]).

We shall describe two examples of designs of four-dimensio-

nal Ungerboeck codes. The first example originates from Alphabet

2. It has minimum distance 2a2_0.66. The fair partition described

before gives four subsets of 8 vectors each, with minimum intra-

distance 6a2=2. By choosing a 4-state trellis code with the

structure described in Fig.6, we get a squared free distance

6a2 2. If this figure is compared to the minimum distance a-

chieved by using two independent 4-PSK signals, which transmit

the same amount of information "over the same number of dimen-

sions, we see that an energy saving of 3 dB is obtained.

Consider now Alphabet 4. It has a minimum square distance

0.3. The fair partition described gives 16 subalphabets of 8

5- vectors each, with minimum intradistance 1.2. By using the 4-

state Ungerboeck code described in Fig.7, the squared free

*0 distance obtained is direeul.2. By comparing this to the minimum

distance obtained by using two independent 8-PSK signals, we see

that an energy saving of about 6 dB is obtained.

",.
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'X.

VII. CONCLUSIONS

In this paper we have introduced the concept of generalized

group alphabets. The combination of these alphabets with block

" - or trellis codes was also considered. Some actual designs show

that consideration of GGA's may lead to transmission systems

providing a good performance with bandlimited channels, at the

.. price of a relatively modest complexity.
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Figure captions

Fig. 1 Alphabet 2 and its fair partition

Fig. 2 Alphabet 3 and its fair partition

Fig. 3 Alphabet 4 and its fair partition

Fig. 4 Ginzburg construction

Fig. 5 An example of Ginzburg construction

-. Fig. 6 4-state Ungerboeck code for Alphabet 2

Fig. 7 4-state Ungerboeck code for Alphabet 4
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